Search results
Results from the WOW.Com Content Network
In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the ...
For multivalent ions, it is usual to consider the conductivity divided by the equivalent ion concentration in terms of equivalents per litre, where 1 equivalent is the quantity of ions that have the same amount of electric charge as 1 mol of a monovalent ion: 1 / 2 mol Ca 2+, 1 / 2 mol SO 2−
Differences in transport number arise from differences in electrical mobility. For example, in an aqueous solution of sodium chloride , less than half of the current is carried by the positively charged sodium ions (cations) and more than half is carried by the negatively charged chloride ions (anions) because the chloride ions are able to move ...
As the concentration is increased, however, the conductivity no longer rises in proportion. Moreover, Kohlrausch also found that the limiting conductivity of an electrolyte, λ 0 + and λ 0 −, are the limiting molar conductivities of the individual ions. The following table gives values for the limiting molar conductivities for some selected ...
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...
A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H 2 O) n] z+. The solvation number , n , determined by a variety of experimental methods is 4 for Li + and Be 2+ and 6 for most elements in periods 3 and 4 of the periodic table .
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
This line of reasoning led to the development of experiments (by Akira Takeuchi and Noriko Takeuchi in 1960) that demonstrated that acetylcholine-activated ion channels are approximately equally permeable to Na + and K + ions. The experiment was performed by lowering the external Na + concentration, which lowers (makes more negative) the Na ...