Search results
Results from the WOW.Com Content Network
Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s, [170] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. [171] Gravity assists through planetary flybys can be used to reduce the energy required to reach Jupiter. [172]
The Jupiter radius or Jovian radius (R J or R Jup) has a value of 71,492 km (44,423 mi), or 11.2 Earth radii (R 🜨) [2] (one Earth radius equals 0.08921 R J). The Jupiter radius is a unit of length used in astronomy to describe the radii of gas giants and some exoplanets. It is also used in describing brown dwarfs.
At this point, the spacecraft was 83 million kilometers (52 million miles) from Jupiter, but 664 million kilometers (413 × 10 ^ 6 mi) from Earth, and telemetry from the spacecraft, transmitted at the speed of light, took 37 minutes to reach JPL. A tiny frequency change in the radio signal indicated that the separation had been accomplished.
The size and shape of the probe's orbit were adjusted to a much smaller degree, so that its aphelion remained at approximately 5 AU (Jupiter's distance from the Sun), while its perihelion lay somewhat beyond 1 AU (Earth's distance from the Sun). During its Jupiter encounter, the probe made measurements of the planet's magnetosphere. [33]
[16] [17] [18] An astronomical unit, or AU, is the distance from Earth to the Sun, which is approximately 150 billion meters (93 million miles). [19] Small Solar System objects are classified by their orbits: [20] [21] Main Asteroid belt (main belt), between Mars and Jupiter, in near circular orbit, 2.2 to 3.2 AU
Europe's Jupiter probe to stage daring lunar-Earth fly-by. Tim Hepher. ... ESA said the Airbus-built probe was due to pass 750 km (465 miles) from the Moon's surface at its closest point.
In 1998, Nakamura and Kurahashi that estimated every 500–1000 years, a comet with a diameter greater than 1 km (0.62 miles) could impact the planet. [73] This estimate was revised after the 1994 impact of SL9. In various subsequent works, values between 50 and 350 years were suggested for an object of 0.5 and 1 km (0.31 and 0.62 miles).
Metis is the innermost of Jupiter's four small inner moons. It orbits Jupiter at a distance of ~128,000 km (1.79 Jupiter radii) within Jupiter's main ring. Metis's orbit has very small eccentricity (~0.0002) and inclination (~ 0.06°) relative to the equator of Jupiter. [2] [3]