enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    In his 1821 book Cours d'analyse, Augustin-Louis Cauchy discussed variable quantities, infinitesimals and limits, and defined continuity of = by saying that an infinitesimal change in x necessarily produces an infinitesimal change in y, while Grabiner claims that he used a rigorous epsilon-delta definition in proofs. [2]

  3. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    The modern definition of a limit goes back to Bernard Bolzano who, in 1817, developed the basics of the epsilon-delta technique to define continuous functions. However, his work remained unknown to other mathematicians until thirty years after his death. [5]

  4. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon ε or ϵ, or less commonly the Latin lower case e. Index notation allows one to display permutations in a way compatible with tensor analysis: ε i 1 i 2 … i n {\displaystyle \varepsilon _{i_{1}i_{2}\dots i_{n}}} where each index i 1 , i 2 , ..., i n takes ...

  5. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  6. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    H. Jerome Keisler, David Tall, and other educators maintain that the use of infinitesimals is more intuitive and more easily grasped by students than the "epsilondelta" approach to analytic concepts. [10] This approach can sometimes provide easier proofs of results than the corresponding epsilondelta formulation of the proof.

  7. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The epsilondelta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.

  8. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    Keisler's Elementary Calculus: An Infinitesimal Approach defines continuity on page 125 in terms of infinitesimals, to the exclusion of epsilon, delta methods. The derivative is defined on page 45 using infinitesimals rather than an epsilon-delta approach. The integral is defined on page 183 in terms of infinitesimals.

  9. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...