enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean speed theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_speed_theorem

    Mean speed theorem. Oresme's geometric verification of the Oxford Calculators' Merton Rule of uniform acceleration, or mean speed theorem. Galileo 's demonstration of the law of the space traversed in case of uniformly varied motion. It is the same demonstration that Oresme had made centuries earlier. The mean speed theorem, also known as the ...

  3. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position , which varies with (time). An example of linear motion is an ...

  4. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    the metric in the hyperbolically accelerated frame follows as. These transformations define the Rindler observer as an observer that is "at rest" in Rindler coordinates, i.e., maintaining constant x, y, z, and only varying t as time passes. The coordinates are valid in the region , which is often called the Rindler wedge, if represents the ...

  5. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Motion graphs and derivatives. The green line shows the slope of the velocity-time graph at the particular point where the two lines touch. Its slope is the acceleration at that point. In mechanics, the derivative of the position vs. time graph of an object is equal to the velocity of the object. In the International System of Units, the ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠dr dt⁠), and its acceleration (the second derivative of r, a = ⁠d2r dt2⁠), and time t. Euclidean vectors in 3D are denoted throughout in bold.

  7. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    is the uniform rate of acceleration. In particular, the motion can be resolved into two orthogonal parts, one of constant velocity and the other according to the above equations. As Galileo showed, the net result is parabolic motion, which describes, e.g., the trajectory of a projectile in vacuum near the surface of Earth.

  8. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time. The branch of physics describing the motion of objects without reference to their cause is called kinematics ...

  9. Acceleration (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(special...

    Also equations of motion can be formulated which connect acceleration and force. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are hyperbolic motion for constant longitudinal proper acceleration or uniform circular motion.