Search results
Results from the WOW.Com Content Network
gcd(a, b) is closely related to the least common multiple lcm(a, b): we have gcd(a, b)⋅lcm(a, b) = | a⋅b |. This formula is often used to compute least common multiples: one first computes the GCD with Euclid's algorithm and then divides the product of the given numbers by their GCD. The following versions of distributivity hold true:
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
The greatest common divisor g is the largest natural number that divides both a and b without leaving a remainder. Synonyms for GCD include greatest common factor (GCF), highest common factor (HCF), highest common divisor (HCD), and greatest common measure (GCM).
Bézout's identity Bézout's identity, also called Bézout's lemma, states that if d is the greatest common divisor of two integers a and b, then there exists integers x and y such that ax + by = d, and in fact the integers of the form as + bt are exactly the multiples of d.
Lowest common factor may refer to the following mathematical terms: Greatest common divisor, also known as the greatest common factor; Least common multiple;
The largest element of this lattice is 0 and the smallest is 1. The meet operation ∧ is given by the greatest common divisor and the join operation ∨ by the least common multiple. This lattice is isomorphic to the dual of the lattice of subgroups of the infinite cyclic group Z.
Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.
The phrase least common divisor is a confusion of the following two distinct concepts in arithmetic: Least common multiple; Greatest common divisor