enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: where is the mass and is the speed (magnitude of the velocity) of the body. In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules.

  3. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Kinetic theory of gases. The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.

  4. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    On average, two atoms rebound from each other with the same kinetic energy as before a collision. Five atoms are colored red so their paths of motion are easier to see. In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same.

  5. Degrees of freedom (physics and chemistry) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(physics...

    R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur. Any atom or molecule has three degrees of freedom associated with translational motion (kinetic energy) of the center of mass with respect

  6. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.

  7. Maxwell–Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann...

    Maxwell–Boltzmann. In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell (ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used for describing particle speeds in idealized gases, where the particles move ...

  8. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Lagrangian mechanics describes a mechanical system as a pair (M, L) consisting of a configuration space M and a smooth function within that space called a Lagrangian. For many systems, L = T − V, where T and V are the kinetic and potential energy of the system, respectively. [3]

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Without friction to dissipate a body's energy into heat, the body's energy will trade between potential and (non-thermal) kinetic forms while the total amount remains constant. Any gain of kinetic energy, which occurs when the net force on the body accelerates it to a higher speed, must be accompanied by a loss of potential energy.