enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The speed of the planet in the main orbit is constant. ... For comparison, ... Earth 1 365.2564 7.496 Mars 1.52366 686.9796 7.495 Jupiter

  4. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars comes closer to Earth more than any other planet save Venus at its nearest—56 million km is the closest distance between Mars and Earth, whereas the closest Venus comes to Earth is 40 million km. Mars comes closest to Earth every other year, around the time of its opposition, when Earth is sweeping between the Sun and Mars. Extra-close ...

  5. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  6. Space travel under constant acceleration - Wikipedia

    en.wikipedia.org/wiki/Space_travel_under...

    For the middle of the journey the ship's speed will be roughly the speed of light, and it will slow down again to zero over a year at the end of the journey. As a rule of thumb, for a constant acceleration at 1 g (Earth gravity), the journey time, as measured on Earth, will be the distance in light years to the destination, plus 1 year. This ...

  7. List of artificial objects leaving the Solar System - Wikipedia

    en.wikipedia.org/wiki/List_of_artificial_objects...

    Escape velocity from the sun without the influence of Earth is 42.1 km/s. In order to reach this speed, it is highly advantageous to use as a boost the orbital speed of the Earth around the Sun, which is 29.78 km/s. By later passing near a planet, a probe can gain extra speed from a gravity assist.

  8. Interplanetary spaceflight - Wikipedia

    en.wikipedia.org/wiki/Interplanetary_spaceflight

    Then, after intercepting Mars, it must change its speed by another 2.3 km/s in order to match Mars' orbital speed around the Sun and enter an orbit around it. [12] For comparison, launching a spacecraft into low Earth orbit requires a change in speed of about 9.5 km/s.

  9. Deimos (moon) - Wikipedia

    en.wikipedia.org/wiki/Deimos_(moon)

    Unlike Phobos, which orbits so fast that it rises in the west and sets in the east, Deimos rises in the east and sets in the west, slower than Mars's rotation speed. The Sun-synodic orbital period of Deimos of about 30.4 hours exceeds the Martian solar day (" sol ") of about 24.7 hours by such a small amount that 2.48 days (2.41 sols) elapse ...