enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.

  3. Uniformly most powerful test - Wikipedia

    en.wikipedia.org/wiki/Uniformly_most_powerful_test

    In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma , the likelihood-ratio test is UMP for testing simple (point) hypotheses.

  4. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    When two models are nested, models can also be compared using a chi-square difference test. The chi-square difference test is computed by subtracting the likelihood ratio chi-square statistics for the two models being compared. This value is then compared to the chi-square critical value at their difference in degrees of freedom.

  5. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    Note: Fisher's G-test in the GeneCycle Package of the R programming language (fisher.g.test) does not implement the G-test as described in this article, but rather Fisher's exact test of Gaussian white-noise in a time series. [10] Another R implementation to compute the G statistic and corresponding p-values is provided by the R package entropy.

  6. Neyman–Pearson lemma - Wikipedia

    en.wikipedia.org/wiki/Neyman–Pearson_lemma

    In practice, the likelihood ratio is often used directly to construct tests — see likelihood-ratio test.However it can also be used to suggest particular test-statistics that might be of interest or to suggest simplified tests — for this, one considers algebraic manipulation of the ratio to see if there are key statistics in it related to the size of the ratio (i.e. whether a large ...

  7. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.

  8. Vuong's closeness test - Wikipedia

    en.wikipedia.org/wiki/Vuong's_closeness_test

    In statistics, the Vuong closeness test is a likelihood-ratio-based test for model selection using the Kullback–Leibler information criterion. This statistic makes probabilistic statements about two models. They can be nested, strictly non-nested or partially non-nested (also called overlapping). The statistic tests the null hypothesis that ...

  9. Wilks's lambda distribution - Wikipedia

    en.wikipedia.org/wiki/Wilks's_lambda_distribution

    In statistics, Wilks' lambda distribution (named for Samuel S. Wilks), is a probability distribution used in multivariate hypothesis testing, especially with regard to the likelihood-ratio test and multivariate analysis of variance (MANOVA).