Search results
Results from the WOW.Com Content Network
With the new operations, the implementation of AVL trees can be more efficient and highly-parallelizable. [13] The function Join on two AVL trees t 1 and t 2 and a key k will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2.
Under this framework, the join operation captures all balancing criteria of different balancing schemes, and all other functions join have generic implementation across different balancing schemes. The join-based algorithms can be applied to at least four balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps.
function lookupByPositionIndex(i) node ← head i ← i + 1 # don't count the head as a step for level from top to bottom do while i ≥ node.width[level] do # if next step is not too far i ← i - node.width[level] # subtract the current width node ← node.next[level] # traverse forward at the current level repeat repeat return node.value end ...
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
The weak AVL tree is defined by the weak AVL rule: Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree.
As an abstract data type, the abstract tree type T with values of some type E is defined, using the abstract forest type F (list of trees), by the functions: value: T → E children: T → F
If a large proportion of the elements of the tree are deleted, then the tree will become much larger than the current size of the stored elements, and the performance of other operations will be adversely affected by the deleted elements. When this is undesirable, the following algorithm can be followed to remove a value from the 2–3–4 tree:
The algorithms for bulk operations aren't just applicable to the red–black tree, but can be adapted to other sorted sequence data structures also, like the 2–3 tree, 2–3–4 tree and (a,b)-tree. In the following different algorithms for bulk insert will be explained, but the same algorithms can also be applied to removal and update.