Search results
Results from the WOW.Com Content Network
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
The classical objects of interest in arithmetic geometry are rational points: sets of solutions of a system of polynomial equations over number fields, finite fields, p-adic fields, or function fields, i.e. fields that are not algebraically closed excluding the real numbers. Rational points can be directly characterized by height functions ...
This is a list of unsolved problems in chemistry. Problems in chemistry are considered unsolved when an expert in the field considers it unsolved or when several experts in the field disagree about a solution to a problem.
This category represents all rational numbers, that is, those real numbers which can be represented in the form: ...where and are integers and is not equal to zero. All integers are rational, including zero.
In mathematics, specifically algebraic geometry, a period or algebraic period [1] is a complex number that can be expressed as an integral of an algebraic function over an algebraic domain. The periods are a class of numbers which includes, alongside the algebraic numbers, many well known mathematical constants such as the number π.
Equivalence class: given an equivalence relation, [] often denotes the equivalence class of the element x. 3. Integral part : if x is a real number , [ x ] {\displaystyle [x]} often denotes the integral part or truncation of x , that is, the integer obtained by removing all digits after the decimal mark .
Namely, Lehmer showed that for relatively prime integers k and n with n > 2, the number 2 cos(2πk/n) is an algebraic number of degree φ(n)/2, where φ denotes Euler's totient function. Because rational numbers have degree 1, we must have n ≤ 2 or φ(n) = 2 and therefore the only possibilities are n = 1,2,3,4,6.