enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful) has multiplicity above 1 for all prime

  3. 36 (number) - Wikipedia

    en.wikipedia.org/wiki/36_(number)

    The number of domino tilings of a 4×4 checkerboard is 36. [10] Since it is possible to find sequences of 36 consecutive integers such that each inner member shares a factor with either the first or the last member, 36 is an ErdÅ‘s–Woods number. [11] The sum of the integers from 1 to 36 is 666 (see number of the beast). 36 is also a ...

  4. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    For n ≥ 2, a(n) is the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached; a(n) = −1 if no prime is ever reached. A037274

  5. How To Use the 28/36 Rule To Determine How Much House ... - AOL

    www.aol.com/finance/28-36-rule-determine-much...

    The 28/36 rule says your total housing costs shouldn’t exceed 28% of your gross income, and your total debt shouldn’t exceed 36%. ... multiply that by 0.28 to find the maximum amount you ...

  6. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways. The highly composite number: 10080 10080 = (2 × 2 × 2 × 2 × 2) × (3 × 3) × 5 × 7

  7. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    No odd perfect numbers are known; hence, all known perfect numbers are triangular. For example, the third triangular number is (3 × 2 =) 6, the seventh is (7 × 4 =) 28, the 31st is (31 × 16 =) 496, and the 127th is (127 × 64 =) 8128. The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9.

  8. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.