Search results
Results from the WOW.Com Content Network
This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.
The most basic scalar field theory is the linear theory. Through the Fourier decomposition of the fields, it represents the normal modes of an infinity of coupled oscillators where the continuum limit of the oscillator index i is now denoted by x.
Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
All dynamical variables can be derived from position q, momentum p, and time t, and written as a function of these: A = A(q, p, t). If A(q, p, t) and B(q, p, t) are two scalar valued dynamical variables, the Poisson bracket is defined by the generalized coordinates and momenta:
The pure Higgs boson sector of the Standard model is modelled by a Klein–Gordon field with a potential, denoted for this section. The Standard model is a gauge theory and so while the field transforms trivially under the Lorentz group, it transforms as a C 2 {\displaystyle \mathbb {C} ^{2}} -valued vector under the action of the SU ( 2 ...
Many times in the use and calculation of electric and magnetic fields, the approach used first computes an associated potential: the electric potential, , for the electric field, and the magnetic vector potential, A, for the magnetic field. The electric potential is a scalar field, while the magnetic potential is a vector field.
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().