enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SIMPLEC algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLEC_algorithm

    The steps involved are same as the SIMPLE algorithm and the algorithm is iterative in nature. p*, u*, v* are guessed Pressure, X-direction velocity and Y-direction velocity respectively, p', u', v' are the correction terms respectively and p, u, v are the correct fields respectively; Φ is the property for which we are solving and d terms are involved with the under relaxation factor.

  3. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.

  4. Ultrarelativistic limit - Wikipedia

    en.wikipedia.org/wiki/Ultrarelativistic_limit

    Below are few ultrarelativistic approximations when .The rapidity is denoted : ⁡ Motion with constant proper acceleration: d ≈ e aτ /(2a), where d is the distance traveled, a = dφ/dτ is proper acceleration (with aτ ≫ 1), τ is proper time, and travel starts at rest and without changing direction of acceleration (see proper acceleration for more details).

  5. Kantrowitz limit - Wikipedia

    en.wikipedia.org/wiki/Kantrowitz_limit

    The Kantrowitz limit therefore acts a "speed limit" - for a given ratio of tube area and pod area, there is a maximum speed that the pod can travel before flow around the pod chokes and air resistance sharply increases. [5] In order to break through the speed limit set by the Kantrowitz limit, there are two possible approaches.

  6. Law of the wall - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_wall

    law of the wall, horizontal velocity near the wall with mixing length model. In fluid dynamics, the law of the wall (also known as the logarithmic law of the wall) states that the average velocity of a turbulent flow at a certain point is proportional to the logarithm of the distance from that point to the "wall", or the boundary of the fluid region.

  7. Venturi effect - Wikipedia

    en.wikipedia.org/wiki/Venturi_effect

    The upstream static pressure (1) is higher than in the constriction (2), and the fluid speed at "1" is lower than at "2", because the cross-sectional area at "1" is greater than at "2". A flow of air through a pitot tube Venturi meter, showing the columns connected in a manometer and partially filled with water. The meter is "read" as a ...

  8. Compressor characteristic - Wikipedia

    en.wikipedia.org/wiki/Compressor_characteristic

    Compressor characteristic is a mathematical curve that shows the behaviour of a fluid going through a dynamic compressor.It shows changes in fluid pressure, temperature, entropy, flow rate etc.) with the compressor operating at different speeds.

  9. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).