Search results
Results from the WOW.Com Content Network
The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.
Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C 6 H 5) 3 and often abbreviated to P Ph 3 or Ph 3 P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic ...
Stryker's reagent ([(PPh 3)CuH] 6), [1] also known as the Osborn complex, is a hexameric copper hydride ligated with triphenylphosphine. It is a brick red, air-sensitive solid. Stryker's reagent is a mildly hydridic reagent, used in homogeneous catalysis of conjugate reduction reactions of enones, enoates, and related substrates.
One of the first applications of phosphine ligands in catalysis was the use of triphenylphosphine in "Reppe" chemistry (1948), which included reactions of alkynes, carbon monoxide, and alcohols. [16] In his studies, Reppe discovered that this reaction more efficiently produced acrylic esters using NiBr 2 (PPh 3) 2 as a catalyst instead of NiBr 2.
Diisopropyl azodicarboxylate (DIAD) is the diisopropyl ester of azodicarboxylic acid. It is used as a reagent in the production of many organic compounds. It is often used with triphenylphosphine in the Mitsunobu reaction, [2] wherein it serves as a hydride acceptor. It has also been used to generate aza-Baylis-Hillman adducts with acrylates. [3]
Phosphate ester are synthesized by alcoholysis of phosphorus oxychloride. A variety of mixed amido-alkoxo derivatives are known, one medically significant example being the anti-cancer drug cyclophosphamide. Also derivatives containing the thiophosphoryl group (P=S) include the pesticide malathion.
The Appel reaction is an organic reaction that converts an alcohol into an alkyl chloride using triphenylphosphine and carbon tetrachloride. [1] The use of carbon tetrabromide or bromine as a halide source will yield alkyl bromides, whereas using carbon tetraiodide , methyl iodide or iodine gives alkyl iodides .
Building on the reactivity of the triphenylphosphine ligand, the structure of ligands used for the Tsuji–Trost reaction quickly became more complex. Today, these ligands may contain phosphorus, sulfur, nitrogen or some combination of these elements, but most studies have concentrated on the mono- and diphosphine ligands.