Search results
Results from the WOW.Com Content Network
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
A regularization term (or regularizer) () is added to a loss function: = ((),) + where is an underlying loss function that describes the cost of predicting () when the label is , such as the square loss or hinge loss; and is a parameter which controls the importance of the regularization term.
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1]
The function f is variously called an objective function, criterion function, loss function, cost function (minimization), [8] utility function or fitness function (maximization), or, in certain fields, an energy function or energy functional. A feasible solution that minimizes (or maximizes) the objective function is called an optimal solution.
Logistic regression typically optimizes the log loss for all the observations on which it is trained, which is the same as optimizing the average cross-entropy in the sample. Other loss functions that penalize errors differently can be also used for training, resulting in models with different final test accuracy. [7]
Two very commonly used loss functions are the squared loss, () =, and the absolute loss, () = | |.The squared loss function results in an arithmetic mean-unbiased estimator, and the absolute-value loss function results in a median-unbiased estimator (in the one-dimensional case, and a geometric median-unbiased estimator for the multi-dimensional case).
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
The loss function is defined using triplets of training points of the form (,,).In each triplet, (called an "anchor point") denotes a reference point of a particular identity, (called a "positive point") denotes another point of the same identity in point , and (called a "negative point") denotes an point of an identity different from the identity in point and .