Search results
Results from the WOW.Com Content Network
Polygon triangulation. In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, [1] i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P. Triangulations may be viewed as special cases of planar straight-line graphs.
Cell is the intersection of all of these half-spaces, and hence it is a convex polygon. [6] When two cells in the Voronoi diagram share a boundary, it is a line segment , ray , or line, consisting of all the points in the plane that are equidistant to their two nearest sites.
The triangulation number is T = b 2 + bc + c 2. This number times the number of original faces expresses how many triangles the new polyhedron will have. This number times the number of original faces expresses how many triangles the new polyhedron will have.
Compute a center for the polygon face, e.g. the average of all its vertices. Connecting the vertices of a polygon face with its center gives a planar umbrella-shaped triangulation. Trivially, a set of tetrahedra is obtained by connecting triangles of the cell's hull with the cell's site.
The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to ().
Polygon triangulations may be found in linear time and form the basis of several important geometric algorithms, including a simple approximate solution to the art gallery problem. The constrained Delaunay triangulation is an adaptation of the Delaunay triangulation from point sets to polygons or, more generally, to planar straight-line graphs.
However, this polygon also has other ears that are not evident in this triangulation. In geometry , the two ears theorem states that every simple polygon with more than three vertices has at least two ears , vertices that can be removed from the polygon without introducing any crossings.
Other methods also exist for describing polygonal tilings. When the tessellation is made of regular polygons, the most common notation is the vertex configuration, which is simply a list of the number of sides of the polygons around a vertex. The square tiling has a vertex configuration of 4.4.4.4, or 4 4.