enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    Cell is the intersection of all of these half-spaces, and hence it is a convex polygon. [6] When two cells in the Voronoi diagram share a boundary, it is a line segment , ray , or line, consisting of all the points in the plane that are equidistant to their two nearest sites.

  3. Polygon triangulation - Wikipedia

    en.wikipedia.org/wiki/Polygon_triangulation

    Polygon triangulation. In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, [1] i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P. Triangulations may be viewed as special cases of planar straight-line graphs.

  4. Bowyer–Watson algorithm - Wikipedia

    en.wikipedia.org/wiki/Bowyer–Watson_algorithm

    The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to (⁡).

  5. Two ears theorem - Wikipedia

    en.wikipedia.org/wiki/Two_ears_theorem

    However, this polygon also has other ears that are not evident in this triangulation. In geometry , the two ears theorem states that every simple polygon with more than three vertices has at least two ears , vertices that can be removed from the polygon without introducing any crossings.

  6. 120-cell - Wikipedia

    en.wikipedia.org/wiki/120-cell

    Only 4 of those 15 chords occur in the 16-cell, 8-cell and 24-cell. The four hypercubic chords √ 1, √ 2, √ 3 and √ 4 are sufficient to build the 24-cell and all its component parts. The 24-cell is the unique solution to the combination of these 4 chords and all the regular polytopes that can be built from them.

  7. Fan triangulation - Wikipedia

    en.wikipedia.org/wiki/Fan_Triangulation

    In computational geometry, a fan triangulation is a simple way to triangulate a polygon by choosing a vertex and drawing edges to all of the other vertices of the polygon. Not every polygon can be triangulated this way, so this method is usually only used for convex polygons .

  8. Polygon with holes - Wikipedia

    en.wikipedia.org/wiki/Polygon_with_holes

    In geometry, a polygon with holes is an area-connected planar polygon with one external boundary and one or more interior boundaries (holes). [1] Polygons with holes can be dissected into multiple polygons by adding new edges, so they are not frequently needed. An ordinary polygon can be called simply-connected, while a polygon-with-holes is ...

  9. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    Schläfli also found four of the regular star 4-polytopes: the grand 120-cell, great stellated 120-cell, grand 600-cell, and great grand stellated 120-cell. He skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: F − E + V = 2).