Search results
Results from the WOW.Com Content Network
These groups are characterized by i) an n-fold proper rotation axis C n; ii) n 2-fold proper rotation axes C 2 normal to C n; iii) a mirror plane σ h normal to C n and containing the C 2 s. The D 1h group is the same as the C 2v group in the pyramidal groups section. The D 8h table reflects the 2007 discovery of errors in older references. [4]
Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple ...
Weyl's theorem implies (in fact is equivalent to) that the enveloping algebra of a finite-dimensional representation is a semisimple ring in the following way.. Given a finite-dimensional Lie algebra representation : (), let be the associative subalgebra of the endomorphism algebra of V generated by ().
Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible.
The most basic example is the Lie algebra of matrices with the commutator as Lie bracket, or more abstractly as the endomorphism algebra of an n-dimensional vector space, (). This is the Lie algebra of the general linear group GL( n ), and is reductive as it decomposes as g l n = s l n ⊕ k , {\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl ...
For n = 3 the obvious analogue of the (n − 1)-dimensional representation is reducible – the permutation representation coincides with the regular representation, and thus breaks up into the three one-dimensional representations, as A 3 ≅ C 3 is abelian; see the discrete Fourier transform for representation theory of cyclic groups.
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
The (q − 1)/2 irreducible discrete series representations of dimension q − 1, together with 2 representations of dimension (q − 1)/2 coming from a reducible discrete series representation. There are two classes of tori associated to the two elements (or conjugacy classes) of the Weyl group, denoted by T (1) (cyclic of order q −1) and T ...