Search results
Results from the WOW.Com Content Network
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.
3-satisfiability can be generalized to k-satisfiability (k-SAT, also k-CNF-SAT), when formulas in CNF are considered with each clause containing up to k literals. [ citation needed ] However, since for any k ≥ 3, this problem can neither be easier than 3-SAT nor harder than SAT, and the latter two are NP-complete, so must be k-SAT.
In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...
The partial Max-SAT problem is the problem where some clauses necessarily must be satisfied (hard clauses) and the sum total of weights of the rest of the clauses (soft clauses) are to be maximized or minimized, depending on the problem. Partial Max-SAT represents an intermediary between Max-SAT (all clauses are soft) and SAT (all clauses are ...
The circuit on the left is satisfiable but the circuit on the right is not. In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true. [1]
The soft satisfiability problem (soft-SAT), given a set of SAT problems, asks for the maximum number of those problems which can be satisfied by any assignment. [16] The minimum satisfiability problem. The MAX-SAT problem can be extended to the case where the variables of the constraint satisfaction problem belong to the set
A Horn formula is a propositional formula formed by conjunction of Horn clauses. Horn satisfiability is actually one of the "hardest" or "most expressive" problems which is known to be computable in polynomial time, in the sense that it is a P-complete problem. [2] The Horn satisfiability problem can also be asked for propositional many-valued ...
He constructs a PCP Verifier for 3-SAT that reads only 3 bits from the Proof. For every ε > 0, there is a PCP-verifier M for 3-SAT that reads a random string r of length ( ()) and computes query positions i r, j r, k r in the proof π and a bit b r. It accepts if and only if 'π(i r) ⊕ π(j r) ⊕ π(k r) = b r.