Search results
Results from the WOW.Com Content Network
An atomic force microscope on the left with controlling computer on the right. Atomic force microscopy [1] (AFM) is a type of SPM, with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit. The information is gathered by "feeling" or "touching" the surface with a ...
Non-contact atomic force microscopy (nc-AFM), also known as dynamic force microscopy (DFM), is a mode of atomic force microscopy, which itself is a type of scanning probe microscopy. In nc-AFM a sharp probe is moved close (order of Angstroms ) to the surface under study, the probe is then raster scanned across the surface, the image is then ...
This is a sub-diffraction technique. Examples of scanning probe microscopes are the atomic force microscope (AFM), the scanning tunneling microscope, the photonic force microscope and the recurrence tracking microscope. All such methods use the physical contact of a solid probe tip to scan the surface of an object, which is supposed to be ...
Electrochemical AFM (EC-AFM) is a particular type of Scanning probe microscopy (SPM), which combines the classical Atomic force microscopy (AFM) together with electrochemical measurements. EC-AFM allows to perform in-situ AFM measurements in an electrochemical cell , in order to investigate the actual changes in the electrode surface morphology ...
Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM). [ 1 ] [ 2 ] [ 3 ] By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlation with sample features.
Electrostatic force microscopy (EFM) is a type of dynamic non-contact atomic force microscopy where the electrostatic force is probed. ("Dynamic" here means that the cantilever is oscillating and does not make contact with the sample). This force arises due to the attraction or repulsion of separated charges.
Piezoresponse force microscopy is a technique which since its inception and first implementation by Güthner and Dransfeld [1] has steadily attracted more and more interest. This is due in large part to the many benefits and few drawbacks that PFM offers researchers in varying fields from ferroelectrics, semiconductors and even biology. [ 2 ]
The theory of bimodal AFM provides analytical expressions to link material properties with microscope observables. For example, for a paraboloid probe (radius ) and a tip-sample force given by the linear viscoelastic Kelvin-Voigt model, the effective elastic modulus of the sample, viscous coefficient of compressibility , loss tangent or ...