Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
In physics, the Heisenberg picture or Heisenberg representation [1] is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which observables incorporate a dependency on time, but the states are time-independent.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
In quantum mechanics, dynamical pictures (or representations) are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system.. The two most important ones are the Heisenberg picture and the Schrödinger picture.
In physics, the Schrödinger picture or Schrödinger representation is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators (observables and others) are mostly constant with respect to time (an exception is the Hamiltonian which may change if the potential changes).
James K. Freericks (born 1963) is an American physicist and endowed chair at Georgetown University. He has worked in fields of condensed matter physics, mathematical physics, atomic physics, nonequilibrium physics, quantum computation, and quantum mechanics pedagogy.
A Feynman diagram is a graphical representation of a perturbative contribution to the transition amplitude or correlation function of a quantum mechanical or statistical field theory. Within the canonical formulation of quantum field theory, a Feynman diagram represents a term in the Wick's expansion of the perturbative S-matrix.
Applications of quantum mechanics include explaining phenomena found in nature as well as developing technologies that rely upon quantum effects, like integrated circuits and lasers. [ note 1 ] Quantum mechanics is also critically important for understanding how individual atoms are joined by covalent bonds to form molecules .