Search results
Results from the WOW.Com Content Network
As the charged object is brought near the electroscope terminal, the leaves spread apart, because the electric field from the object induces a charge in the conductive electroscope rod and leaves, and the charged leaves repel each other. The opposite-sign charge is attracted to the nearby object and collects on the terminal disk, while the same ...
The needle turns to point at a nearby charged object due to charges induced in the ends of the needle by the external charge, through electrostatic induction.For example, if a positively charged object is brought near, the mobile negative charges in the metal will be attracted to it, and move to the end of the needle nearest the object.
[4]: p.712 For example, if a positive charge is brought near the object (see picture of cylindrical electrode near electrostatic machine), the electrons in the metal will be attracted toward it and move to the side of the object facing it. When the electrons move out of an area, they leave an unbalanced positive charge due to the nuclei.
When two objects were touched together, sometimes the objects became spontaneously charged (οne negative charge, one positive charge). Corona effect — Build-up of charges in a high-voltage conductor (common in AC transmission lines), which ionizes the air and produces visible light, usually purple.
If the charge detector is touched to the inside surface of the container, it is found to be charged with opposite polarity. For example, if the object C has a positive charge, the outside of the container A will be found to have a positive charge, while the inside of the container has a negative charge.
English: Diagram showing how a pith-ball electroscope works. The molecules (yellow ovals) that make up the pith ball (A) consist of positive charges (atomic nuclei) and negative charges (electrons) close together. Bringing a charged object (B) near the pith ball causes these charges to separate
The concept of an electrostatic generator in which charge is mechanically transported in small amounts into the interior of a high-voltage electrode originated with the Kelvin water dropper, invented in 1867 by William Thomson (Lord Kelvin), [3] in which charged drops of water fall into a bucket with the same polarity charge, adding to the charge. [4]
The charge remains until it can move away by an electric current or electrical discharge. The word "static" is used to differentiate it from current electricity, where an electric charge flows through an electrical conductor. [1] A static electric charge can be created whenever two surfaces contact and/or slide against each other and then separate.