Search results
Results from the WOW.Com Content Network
The Bresenham Line-Drawing Algorithm by Colin Flanagan; National Institute of Standards and Technology page on Bresenham's algorithm; Calcomp 563 Incremental Plotter Information; Bresenham Algorithm in several programming languages; The Beauty of Bresenham’s Algorithm — A simple implementation to plot lines, circles, ellipses and Bézier curves
These algorithm works just fine when (i.e., slope is less than or equal to 1), but if < (i.e., slope greater than 1), the line becomes quite sparse with many gaps, and in the limiting case of =, a division by zero exception will occur.
Similar calculations are carried out to determine pixel positions along a line with negative slope. Thus, if the absolute value of the slope is less than 1, we set dx=1 if x s t a r t < x e n d {\displaystyle x_{\rm {start}}<x_{\rm {end}}} i.e. the starting extreme point is at the left.
A circle of radius 23 drawn by the Bresenham algorithm. In computer graphics, the midpoint circle algorithm is an algorithm used to determine the points needed for rasterizing a circle. It is a generalization of Bresenham's line algorithm. The algorithm can be further generalized to conic sections. [1] [2] [3]
Bresenham's line algorithm, developed in 1962, is his most well-known innovation. It determines which points on a 2-dimensional raster should be plotted in order to form a straight line between two given points, and is commonly used to draw lines on a computer screen. It is one of the earliest algorithms discovered in the field of computer ...
Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...
I'd like to note that these line drawing algorithms posted by PrisonerOfPain and the Bresenham's line algorithm discussed in the article will not even work for some lines going right down. Here is an example, line start at [1,1] and ends at [3, 25] the line is going right down(in the raster coordinate system), as you will see you'll loop only 2 ...
A naive approach to anti-aliasing the line would take an extremely long time. Wu's algorithm is comparatively fast, but is still slower than Bresenham's algorithm. The algorithm consists of drawing pairs of pixels straddling the line, each coloured according to its distance from the line. Pixels at the line ends are handled separately.