Search results
Results from the WOW.Com Content Network
A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [40] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
The summatory of reciprocal totient function is defined as ():= = ()Edmund Landau showed in 1900 that this function has the asymptotic behavior (+ ) + + ()where γ is the Euler–Mascheroni constant,
Here φ denotes Euler's totient function. ... {1, 5, 7, 11}. The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced ...
The degree of , or in other words the number of nth primitive roots of unity, is (), where is Euler's totient function. The fact that Φ n {\displaystyle \Phi _{n}} is an irreducible polynomial of degree φ ( n ) {\displaystyle \varphi (n)} in the ring Z [ x ] {\displaystyle \mathbb {Z} [x]} is a nontrivial result due to Gauss . [ 4 ]
The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910. [1] It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function. The order of the multiplicative group of integers modulo n is φ(n), where φ is Euler's totient function.
In mathematics, Carmichael's totient function conjecture concerns the multiplicity of values of Euler's totient function φ(n), which counts the number of integers less than and coprime to n. It states that, for every n there is at least one other integer m ≠ n such that φ ( m ) = φ ( n ).
Euler's totient or phi function, φ(n) is an arithmetic function that counts the number of positive integers less than or equal to n that are relatively prime to n. That is, if n is a positive integer, then φ(n) is the number of integers k in the range 1 ≤ k ≤ n which have no common factor with n other than 1.