Search results
Results from the WOW.Com Content Network
A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.
If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ( B ) d . {\displaystyle \det ...
A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.
Any matrix can be reduced by elementary row operations to a matrix in reduced row echelon form. Two matrices in reduced row echelon form have the same row space if and only if they are equal. This line of reasoning also proves that every matrix is row equivalent to a unique matrix with reduced row echelon form.
Two algorithms are suggested: [2] [3] Division-free algorithm — performs matrix reduction to triangular form without any division operation. Fraction-free algorithm — uses division to keep the intermediate entries smaller, but due to the Sylvester's Identity the transformation is still integer-preserving (the division has zero remainder).
The column space of a matrix A is the set of all linear combinations of the columns in A. If A = [a 1 ⋯ a n], then colsp(A) = span({a 1, ..., a n}). Given a matrix A, the action of the matrix A on a vector x returns a linear combination of the columns of A with the coordinates of x as coefficients; that is, the columns of the matrix generate ...
The rank of this matrix is 2, which corresponds to the number of dependent variables in the system. [2] A linear system is consistent if and only if the coefficient matrix has the same rank as its augmented matrix (the coefficient matrix with an extra column added, that column being the column vector of constants). The augmented matrix has rank ...
In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix. The elementary matrices generate the general linear group GL n ( F ) when F is a field .