enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Alternative notations include C(n, k), n C k, n C k, C k n, [3] C n k, and C n,k, in all of which the C stands for combinations or choices; the C notation means the number of ways to choose k out of n objects. Many calculators use variants of the C notation because they can represent it on a single-line display.

  3. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.

  4. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  5. Pascal's rule - Wikipedia

    en.wikipedia.org/wiki/Pascal's_rule

    It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n. There is no restriction on the relative sizes of n and k , [ 1 ] since, if n < k the value of the binomial coefficient is zero and the identity remains valid.

  6. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer. It may represent either the rising or the falling factorial, with different articles and authors using different conventions.

  7. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  8. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    The central binomial coefficients give the number of possible number of assignments of n-a-side sports teams from 2n players, taking into account the playing area side The central binomial coefficient ( 2 n n ) {\displaystyle {\binom {2n}{n}}} is the number of arrangements where there are an equal number of two types of objects.

  9. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Note that there are only people without numbers, meaning we must choose at least one person with a number in order to form a committee of + people. In general, in case x {\displaystyle x} , person x {\displaystyle x} is on the committee and persons 1 , 2 , 3 , … , x − 1 {\displaystyle 1,2,3,\dots ,x-1} are not on the committee.