Search results
Results from the WOW.Com Content Network
The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, stored heat and other thermodynamic properties of substances such as specific internal energy , specific enthalpy , specific Gibbs free energy , and specific ...
Energy density Specific power Cost † Discharge efficiency Self-discharge rate Shelf life Anode Electrolyte Cathode Cutoff Nominal 100% SOC by mass by volume; year V V V MJ/kg (Wh/kg) MJ/L (Wh/L) W/kg Wh/$ ($/kWh) % %/month years Lead–acid: SLA VRLA PbAc Lead: H 2 SO 4: Lead dioxide: Yes 1881 [1] 1.75 [2] 2.1 [2] 2.23–2.32 [2] 0.11–0. ...
Ragone plots can reveal information about gravimetric energy density, but do not convey details about volumetric energy density. The Ragone plot was first used to compare performance of batteries. [2] However, it is suitable for comparing any energy-storage devices, [3] as well as energy devices such as engines, gas turbines, and fuel cells. [4]
Increased energy density requires inserting/extracting more ions from the electrodes.Electrode capacities are compared through three different measures: capacity per unit of mass (known as "specific energy" or "gravimetric capacity"), capacity per unit volume ("volumetric capacity"), and area-normalized specific capacity ("areal capacity").
Specific energy is energy per unit mass, which is used to describe the chemical energy content of a fuel, expressed in SI units as joule per kilogram (J/kg) or equivalent units. [1] Energy density is the amount of chemical energy per unit volume of the fuel, expressed in SI units as joule per litre (J/L) or equivalent units. [2]
Volumetric energy density = 220 Wh/L (790 kJ/L) Gravimetric energy density > 90 Wh/kg [31] (> 320 J/g). Up to 160 Wh/kg [1] (580 J/g). Latest version announced in end of 2023, early 2024 made significant improvements in energy density from 180 up to 205 Wh/kg [32] without increasing production costs.