Search results
Results from the WOW.Com Content Network
A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two ...
It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis).
The relative motion between two plates is also described by the rotation about an Euler pole. In recent times it is easier to determine finite rotations as transforms and ridges are respectively perpendicular and parallel to the direction of a finite rotation pole. [ 2 ]
A point mass does not have a moment of inertia around its own axis, but using the parallel axis theorem a moment of inertia around a distant axis of rotation is achieved. Two point masses, m 1 and m 2, with reduced mass μ and separated by a distance x, about an axis passing through the center of mass of the system and perpendicular to the line ...
As described in the tennis racket theorem, rotation of an object around its first or third principal axis is stable, while rotation around its second principal axis (or intermediate axis) is not. The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes.
The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love [ 1 ] using assumptions proposed by Kirchhoff .
At two years, the bull market is well shy of the average run of 5.5 years. And the total return thus far, about 60%, is a far cry from the average 180% gain, per research from Carson Group chief ...
A plane rotation around a point followed by another rotation around a different point results in a total motion which is either a rotation (as in this picture), or a translation. A motion of a Euclidean space is the same as its isometry: it leaves the distance between any two points unchanged after the transformation.