Search results
Results from the WOW.Com Content Network
Range minimum query reduced to the lowest common ancestor problem. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l … r].
Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained quadratic program. Since 0–1 integer programming is NP-hard in general, QCQP is also NP-hard.
However, the normalised sinc function (blue) has arg min of {−1.43, 1.43}, approximately, because their global minima occur at x = ±1.43, even though the minimum value is the same. [7] In mathematics , the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points ...
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin (0, 0).
The reducible quadratics, in turn, may be determined by expressing the quadratic form λF 1 + μF 2 as a 3×3 matrix: reducible quadratics correspond to this matrix being singular, which is equivalent to its determinant being zero, and the determinant is a homogeneous degree three polynomial in λ and μ and corresponds to the resolvent cubic.
In mathematics, a smooth maximum of an indexed family x 1, ..., x n of numbers is a smooth approximation to the maximum function (, …,), meaning a parametric family of functions (, …,) such that for every α, the function is smooth, and the family converges to the maximum function as .
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.