Search results
Results from the WOW.Com Content Network
SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .
The decorator pattern is a design pattern used in statically-typed object-oriented programming languages to allow functionality to be added to objects at run time; Python decorators add functionality to functions and methods at definition time, and thus are a higher-level construct than decorator-pattern classes.
Calculus studies the behavior of functions using the concept of a limit, the value to which a function's output tends as its input tends to some specific value. The notation lim x → c f ( x ) = L {\textstyle \lim _{x\to c}f(x)=L} means that the value of the function f {\displaystyle f} can be made arbitrarily close to L {\displaystyle L} by ...
The function 2 sin(x) is an odd function in the variable x and the disc T is symmetric with respect to the y-axis, so the value of the first integral is 0. Similarly, the function 3y 3 is an odd function of y, and T is symmetric with respect to the x-axis, and so the only
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
In the mathematical discipline of numerical linear algebra, a matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. Many iterative methods (for example, for systems of differential equations) depend upon the direct solution of matrix equations involving matrices more general than tridiagonal matrices.
A function's identity is based on its implementation. A lambda calculus function (or term) is an implementation of a mathematical function. In the lambda calculus there are a number of combinators (implementations) that satisfy the mathematical definition of a fixed-point combinator.