Search results
Results from the WOW.Com Content Network
Aperture synthesis imaging was later developed at radio wavelengths by Martin Ryle and coworkers from the Radio Astronomy Group at Cambridge University. Martin Ryle and Tony Hewish jointly received a Nobel Prize for this and other contributions to the development of radio interferometry. The radio astronomy group in Cambridge went on to found ...
The Transient Array Radio Telescope (TART) is a low-cost open-source array radio telescope consisting of 24 all-sky GNSS receivers operating at the L1-band (1.575 GHz). TART was designed as an all-sky survey instrument for detecting radio bursts, as well as providing a test-bed for the development of new synthesis imaging and calibration ...
The Mullard Radio Astronomy Observatory (MRAO) is located near Cambridge, UK and is home to a number of the largest and most advanced aperture synthesis radio telescopes in the world, including the One-Mile Telescope, 5-km Ryle Telescope, and the Arcminute Microkelvin Imager.
Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way .
The Combined Array for Research in Millimeter-wave Astronomy (CARMA) was an astronomical instrument comprising 23 radio telescopes, dedicated in 2006. [1] These telescopes formed an astronomical interferometer where all the signals are combined in a purpose-built computer (a correlator) to produce high-resolution astronomical images. [2]
Very-long-baseline interferometry (VLBI) is a type of astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telescopes on Earth or in space. The distance between the radio telescopes is then calculated using the time difference between the ...
Högbom is most well known for the development of the CLEAN algorithm for deconvolution of images created in radio astronomy, published in 1974. [2] [3] This allows the use of arrays of small antennae, generating incomplete sampling data, to effectively simulate a much larger aperture. Högbom was also the first to use Earth rotation synthesis ...
A major focus is on reduction of data from both single-dish and aperture synthesis radio telescopes. Although the tools provided in AIPS++ are mainly designed for processing data from varieties of radio telescopes, the package is expected to also be useful for processing other types of astronomical data and images.