Search results
Results from the WOW.Com Content Network
To see this, note that the two constraints x 1 (x 1 − 1) ≤ 0 and x 1 (x 1 − 1) ≥ 0 are equivalent to the constraint x 1 (x 1 − 1) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained ...
A simple way to see this is to consider the non-convex quadratic constraint x i 2 = x i. This constraint is equivalent to requiring that x i is in {0,1}, that is, x i is a binary integer variable. Therefore, such constraints can be used to model any integer program with binary variables, which is known to be NP-hard.
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...
Quadratically constrained quadratic program; Linear-fractional programming — objective is ratio of linear functions, constraints are linear Fractional programming — objective is ratio of nonlinear functions, constraints are linear; Nonlinear complementarity problem (NCP) — find x such that x ≥ 0, f(x) ≥ 0 and x T f(x) = 0
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Convex quadratically constrained quadratic programs can also be formulated as SOCPs by reformulating the objective function as a constraint. [4] Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program. [4]
For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19] This is the case, for example, if f(x) = x 3 − 2x + 2.
The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...