Search results
Results from the WOW.Com Content Network
In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...
In mathematics, the Routh–Hurwitz matrix, [1] or more commonly just Hurwitz matrix, corresponding to a polynomial is a particular matrix whose nonzero entries are coefficients of the polynomial. Hurwitz matrix and the Hurwitz stability criterion
The Routh array is a tabular method permitting one to establish the stability of a system using only the coefficients of the characteristic polynomial.Central to the field of control systems design, the Routh–Hurwitz theorem and Routh array emerge by using the Euclidean algorithm and Sturm's theorem in evaluating Cauchy indices.
Liénard–Chipart criterion; Nyquist stability criterion; Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be ...
Kharitonov's theorem is a result used in control theory to assess the stability of a dynamical system when the physical parameters of the system are not known precisely. When the coefficients of the characteristic polynomial are known, the Routh–Hurwitz stability criterion can be used to check if the system is stable (i.e. if all roots have negative real parts).
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
The Routh–Hurwitz theorem provides an algorithm for determining if a given polynomial is Hurwitz stable, which is implemented in the Routh–Hurwitz and Liénard–Chipart tests. To test if a given polynomial P (of degree d) is Schur stable, it suffices to apply this theorem to the transformed polynomial
Thus the theorem provides a mathematical test, the Routh–Hurwitz stability criterion, to determine whether a linear dynamical system is stable without solving the system. The Routh–Hurwitz theorem was proved in 1895, and it was named after Edward John Routh and Adolf Hurwitz.