Search results
Results from the WOW.Com Content Network
The case of a converging-diverging nozzle allows a supersonic flow to occur, providing the receiver pressure is sufficiently low. This is shown in figure 3 assuming a constant reservoir pressure with a decreasing receiver pressure. If the receiver pressure is equal to the reservoir pressure, no flow occurs, represented by curve A.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
All gases flow from higher pressure to lower pressure. Choked flow can occur at the change of the cross section in a de Laval nozzle or through an orifice plate. The choked velocity is observed upstream of an orifice or nozzle. The upstream volumetric flow rate is lower than the downstream condition because of the higher upstream density.
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
In locations where a municipal connection is not possible or practical, the required water may be drawn from an open body of water (e.g., lake, pond, river) or a water storage tank. Hydraulic calculations determine if the available water supply pressure is adequate to provide the sprinkler system design flowrate.
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
Normally, Hagen–Poiseuille flow implies not just the relation for the pressure drop, above, but also the full solution for the laminar flow profile, which is parabolic. However, the result for the pressure drop can be extended to turbulent flow by inferring an effective turbulent viscosity in the case of turbulent flow, even though the flow ...
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.