Search results
Results from the WOW.Com Content Network
k is the wave number: k = 2π/λ (radians per meter), ω is the angular frequency: ω = 2π/T (radians per second), x is the horizontal coordinate and the wave propagation direction (meters), z is the vertical coordinate, with the positive z direction pointing out of the fluid layer (meters), λ is the wave length (meters), T is the wave period .
In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m −1 ).
The Keulegan–Carpenter number is important for the computation of the wave forces on offshore platforms. In fluid dynamics , the Keulegan–Carpenter number , also called the period number , is a dimensionless quantity describing the relative importance of the drag forces over inertia forces for bluff objects in an oscillatory fluid flow .
When two signals with these waveforms, same period, and opposite phases are added together, the sum + is either identically zero, or is a sinusoidal signal with the same period and phase, whose amplitude is the difference of the original amplitudes. The phase shift of the co-sine function relative to the sine function is +90°.
The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [ 2 ] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound ), radio waves , and light .
Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
Mode conversion occurs when a wave encounters an interface between materials of different impedances and the incident angle is not normal to the interface. [1] Thus, for example, if a longitudinal wave from a fluid (e.g., water or air) strikes a solid (e.g., steel plate), it is usually refracted and reflected as a function of the angle of incidence, but if some of the energy causes particle ...
In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. [1] Today, the periodogram is a component of more sophisticated methods (see spectral estimation).