Search results
Results from the WOW.Com Content Network
First, the async keyword indicates to C# that the method is asynchronous, meaning that it may use an arbitrary number of await expressions and will bind the result to a promise. [1]: 165–168 The return type, Task<T>, is C#'s analogue to the concept of a promise, and here is indicated to have a result value of type int.
An example is "blocking on a channel" where passively waiting for the other part (i.e. no polling or spin loop) is part of the semantics of channels. [3] Correctly engineered, any of these may be used to implement reactive systems. [clarification needed] Deadlock means that processes pathologically wait for each other in a circle. As such it is ...
Generators, and these are useful for streams – particularly input/output – and for generic traversal of data structures. Communicating sequential processes where each sub-process is a coroutine. Channel inputs/outputs and blocking operations yield coroutines and a scheduler unblocks them on completion events.
In computer science and software engineering, busy-waiting, busy-looping or spinning is a technique in which a process repeatedly checks to see if a condition is true, such as whether keyboard input or a lock is available. Spinning can also be used to generate an arbitrary time delay, a technique that was necessary on systems that lacked a ...
This technique pertains to multitasking operating systems, and is sometimes called a subprocess or traditionally a subtask. There are two major procedures for creating a child process: the fork system call (preferred in Unix-like systems and the POSIX standard) and the spawn (preferred in the modern (NT) kernel of Microsoft Windows , as well as ...
This approach is called asynchronous input/output. Any task that depends on the I/O having completed (this includes both using the input values and critical operations that claim to assure that a write operation has been completed) still needs to wait for the I/O operation to complete, and thus is still blocked, but other processing that does ...
A quine's output is exactly the same as its source code. A quine is a computer program that takes no input and produces a copy of its own source code as its only output. The standard terms for these programs in the computability theory and computer science literature are "self-replicating programs", "self-reproducing programs", and "self-copying programs".
For the portion of the time required for CPU cycles, the process is being executed and is occupying the CPU. During the time required for I/O cycles, the process is not using the processor. Instead, it is either waiting to perform Input/Output, or is actually performing Input/Output. An example of this is reading from or writing to a file on disk.