Search results
Results from the WOW.Com Content Network
Xenon-135 (135 Xe) is an unstable isotope of xenon with a half-life of about 9.2 hours. 135 Xe is a fission product of uranium and it is the most powerful known neutron -absorbing nuclear poison (2 million barns ; [ 1 ] up to 3 million barns [ 1 ] under reactor conditions [ 2 ] ), with a significant effect on nuclear reactor operation.
Xenon-135 is a radioactive isotope of xenon, produced as a fission product of uranium. It has a half-life of about 9.2 hours and is the most powerful known neutron -absorbing nuclear poison (having a neutron absorption cross-section of 2 million barns [ 21 ] ).
More than 40 unstable xenon isotopes undergo radioactive decay, and the isotope ratios of xenon are an important tool for studying the early history of the Solar System. [28] Radioactive xenon-135 is produced by beta decay from iodine-135 (a product of nuclear fission), and is the most significant (and unwanted) neutron absorber in nuclear ...
As caesium 133, 135, and 137 are formed by the beta particle decay of the corresponding xenon isotopes, this causes the caesium to become physically separated from the bulk of the uranium oxide fuel. Because 135 Xe is a potent nuclear poison with the largest cross section for thermal neutron absorption, the buildup of 135 Xe in the fuel inside ...
Naturally occurring xenon is made of nine stable isotopes, but there are also over 40 unstable isotopes that undergo radioactive decay. The isotope ratios of xenon are an important tool for studying the early history of the Solar System. Xenon-135 is produced as a result of nuclear fission and acts as a neutron absorber in nuclear reactors.
The iodine pit, also called the iodine hole or xenon pit, is a temporary disabling of a nuclear reactor due to buildup of short-lived nuclear poisons in the reactor core. The main isotope responsible is 135 Xe, mainly produced by natural decay of 135 I. 135 I is a weak neutron absorber, while 135 Xe is the strongest
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
The period of time in which the reactor is unable to override the effects of xenon-135 is called the xenon dead time or poison outage. During periods of steady state operation, at a constant neutron flux level, the xenon-135 concentration builds up to its equilibrium value for that reactor power in about 40 to 50 hours. When the reactor power ...