Search results
Results from the WOW.Com Content Network
In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group G ∗ H. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a ...
Given two dual numbers p and q, they determine the set of z such that the difference in slopes ("Galilean angle") between the lines from z to p and q is constant. This set is a cycle in the dual number plane; since the equation setting the difference in slopes of the lines to a constant is a quadratic equation in the real part of z, a cycle is ...
The Math Images Project is a wiki collaboration between Swarthmore College, the Math Forum at Drexel University, and the National Science Digital Library. The project aims to introduce the public to mathematics through beautiful and intriguing images found throughout the fields of math. The Math Images Project runs on MediaWiki software, as ...
The polar decomposition of any bounded linear operator A between complex Hilbert spaces is a canonical factorization as the product of a partial isometry and a non-negative operator. [3] The polar decomposition for matrices generalizes as follows: if A is a bounded linear operator then there is a unique factorization of A as a product A = UP ...
For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces ), the coproduct, called the direct sum , consists of the elements of the direct product which have only finitely many nonzero terms.
An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory [5] [6] [7] Chrystal's equation: 1 + + + = Generalization of Clairaut's equation with a singular solution [8] Clairaut's equation: 1
A quadric is said to be non-degenerate if the matrix is invertible. A non-degenerate quadric is non-singular in the sense that its projective completion has no singular point (a cylinder is non-singular in the affine space, but it is a degenerate quadric that has a singular point at infinity).
In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.