enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...

  3. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    is the drag force, which is by definition the force component in the direction of the flow velocity, is the mass density of the fluid, [1] is the flow velocity relative to the object, is the reference area, and

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...

  5. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  6. Ballistic coefficient - Wikipedia

    en.wikipedia.org/wiki/Ballistic_coefficient

    Using his ballistic tables along with Bashforth's tables from the 1870 report, Mayevski created an analytical math formula that calculated the air resistances of a projectile in terms of log A and the value n. Although Mayevski's math used a differing approach than Bashforth, the resulting calculation of air resistance was the same.

  7. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...

  8. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force ( F d ) and the buoyancy is equal to the downward force of gravity ( F G ) acting on the object.

  9. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance. The horizontal ranges of a projectile are equal for two complementary angles of projection with the same velocity. The following applies for ranges which are small compared to the size of the Earth. For longer ranges see sub-orbital spaceflight.