enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  3. Kanade–Lucas–Tomasi feature tracker - Wikipedia

    en.wikipedia.org/wiki/Kanade–Lucas–Tomasi...

    In computer vision, the Kanade–Lucas–Tomasi (KLT) feature tracker is an approach to feature extraction. It is proposed mainly for the purpose of dealing with the problem that traditional image registration techniques are generally costly. KLT makes use of spatial intensity information to direct the search for the position that yields the ...

  4. Structure from motion - Wikipedia

    en.wikipedia.org/wiki/Structure_from_motion

    To find correspondence between images, features such as corner points (edges with gradients in multiple directions) are tracked from one image to the next. One of the most widely used feature detectors is the scale-invariant feature transform (SIFT). It uses the maxima from a difference-of-Gaussians (DOG) pyramid as features. The first step in ...

  5. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches, subsets of keypoints that agree on the object and its location, scale, and orientation in the new image are ...

  6. Features from accelerated segment test - Wikipedia

    en.wikipedia.org/wiki/Features_from_accelerated...

    Features from accelerated segment test (FAST) is a corner detection method, which could be used to extract feature points and later used to track and map objects in many computer vision tasks. The FAST corner detector was originally developed by Edward Rosten and Tom Drummond, and was published in 2006. [ 1 ]

  7. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    The LBP feature vector, in its simplest form, is created in the following manner: Divide the examined window into cells (e.g. 16x16 pixels for each cell). For each pixel in a cell, compare the pixel to each of its 8 neighbors (on its left-top, left-middle, left-bottom, right-top, etc.).

  8. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.

  9. Geometric feature learning - Wikipedia

    en.wikipedia.org/wiki/Geometric_feature_learning

    Geometric feature learning is a technique combining machine learning and computer vision to solve visual tasks. The main goal of this method is to find a set of representative features of geometric form to represent an object by collecting geometric features from images and learning them using efficient machine learning methods.