Search results
Results from the WOW.Com Content Network
In their book, Kathleen Ollerenshaw and David S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is a one-to-one correspondence between reversible squares and most-perfect magic squares. For n = 36, there are about 2.7 × 10 44 essentially different most-perfect magic squares.
A perfect magic cube of order seven was given by A. H. Frost in 1866, and on March 11, 1875, an article was published in the Cincinnati Commercial newspaper on the discovery of a perfect magic cube of order 8 by Gustavus Frankenstein. Perfect magic cubes of orders nine and eleven have also been constructed.
All the pandiagonal squares of order 4 are also most perfect. Franklin magic square when it is a doubly even magic square with three further properties (i) every bent diagonal adds to the magic constant, (ii) every half row and half column starting at an outside edge adds to half the magic constant, and (iii) the square is compact.
Squares of odd numbers are odd, and are congruent to 1 modulo 8, since (2n + 1) 2 = 4n(n + 1) + 1, and n(n + 1) is always even. In other words, all odd square numbers have a remainder of 1 when divided by 8. Every odd perfect square is a centered octagonal number. The difference between any two odd perfect squares is a multiple of 8.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
An example of a 3 × 3 × 3 magic cube. In this example, no slice is a magic square. In this case, the cube is classed as a simple magic cube.. In mathematics, a magic cube is the 3-dimensional equivalent of a magic square, that is, a collection of integers arranged in an n × n × n pattern such that the sums of the numbers on each row, on each column, on each pillar and on each of the four ...
With even cubes, there is considerable restriction, for only 00, o 2, e 4, o 6 and e 8 can be the last two digits of a perfect cube (where o stands for any odd digit and e for any even digit). Some cube numbers are also square numbers; for example, 64 is a square number (8 × 8) and a cube number (4 × 4 × 4).
In 1939, B. Rosser and R. J. Walker published a series of papers on diabolic (perfect) magic squares and cubes. They specifically mentioned that these cubes contained 13m 2 correctly summing lines. They also had 3m pandiagonal magic squares parallel to the faces of the cube, and 6m pandiagonal magic squares parallel to the space-diagonal planes ...