enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Group concept mapping - Wikipedia

    en.wikipedia.org/wiki/Group_concept_mapping

    The resulting maps display the individual statements in two-dimensional space with more similar statements located closer to each other, and grouped into clusters that partition the space on the map. The Concept System software also creates other maps that show the statements in each cluster rated on one or more scales, and absolute or relative ...

  3. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  4. Biclustering - Wikipedia

    en.wikipedia.org/wiki/Biclustering

    Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .

  5. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [1] where Laurens van der Maaten and Hinton proposed the t-distributed variant. [2] It is a nonlinear dimensionality reduction technique for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions ...

  6. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    Self-organizing maps, like most artificial neural networks, operate in two modes: training and mapping. First, training uses an input data set (the "input space") to generate a lower-dimensional representation of the input data (the "map space"). Second, mapping classifies additional input data using the generated map.

  7. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    The inter-cluster distance d(i,j) between two clusters may be any number of distance measures, such as the distance between the centroids of the clusters. Similarly, the intra-cluster distance d '(k) may be measured in a variety of ways, such as the maximal distance between any pair of elements in cluster k. Since internal criterion seek ...

  8. Quantum clustering - Wikipedia

    en.wikipedia.org/wiki/Quantum_clustering

    A given 3D visualization of these trajectories is not an embedding of the trajectories in 3 dimensions. The trajectories have the same dimensionality as the data space, which is often much larger than 3; the visualization is simply a 3D view into a higher-dimensional motion. The channels ('riverbeds') can have meaning in two different ways.

  9. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    A 2-dimensional spring system. Spectral clustering is well known to relate to partitioning of a mass-spring system, where each mass is associated with a data point and each spring stiffness corresponds to a weight of an edge describing a similarity of the two related data points, as in the spring system.