enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Group concept mapping - Wikipedia

    en.wikipedia.org/wiki/Group_concept_mapping

    The resulting maps display the individual statements in two-dimensional space with more similar statements located closer to each other, and grouped into clusters that partition the space on the map. The Concept System software also creates other maps that show the statements in each cluster rated on one or more scales, and absolute or relative ...

  3. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [1] where Laurens van der Maaten and Hinton proposed the t-distributed variant. [2] It is a nonlinear dimensionality reduction technique for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions ...

  4. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  5. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    Self-organizing maps, like most artificial neural networks, operate in two modes: training and mapping. First, training uses an input data set (the "input space") to generate a lower-dimensional representation of the input data (the "map space"). Second, mapping classifies additional input data using the generated map.

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    If a Gaussian mixture is fitted to such data, a strongly non-Gaussian cluster will often be represented by several mixture components rather than a single one. In that case, cluster merging can be used to find a better clustering. [20] A different approach is to use mixtures of complex component densities to represent non-Gaussian clusters. [21 ...

  7. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    Instead it is possible to maintain an array of distances between all pairs of clusters. Whenever two clusters are merged, the formula can be used to compute the distance between the merged cluster and all other clusters. Maintaining this array over the course of the clustering algorithm takes time and space O(n 2). The nearest-neighbor chain ...

  8. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  9. Cluster diagram - Wikipedia

    en.wikipedia.org/wiki/Cluster_diagram

    A cluster in general is a group or bunch of several discrete items that are close to each other. The cluster diagram figures a cluster, such as a network diagram figures a network, a flow diagram a process or movement of objects, and a tree diagram an abstract tree. But all these diagrams can be considered interconnected: A network diagram can ...