enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  3. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.

  4. Mass balance - Wikipedia

    en.wikipedia.org/wiki/Mass_balance

    Strictly speaking the above equation holds also for systems with chemical reactions if the terms in the balance equation are taken to refer to total mass, i.e. the sum of all the chemical species of the system. In the absence of a chemical reaction the amount of any chemical species flowing in and out will be the same; this gives rise to an ...

  5. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  6. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law can be formulated mathematically in the fields of fluid mechanics and continuum mechanics, where the conservation of mass is usually expressed using the continuity equation, given in differential form as + =, where is the density (mass per unit volume), is the time, is the divergence, and is the flow velocity field.

  7. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    In mathematics, a law is a formula that is always true within a given context. [1] Laws describe a relationship , between two or more expressions or terms (which may contain variables ), usually using equality or inequality , [ 2 ] or between formulas themselves, for instance, in mathematical logic .

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.

  9. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]