Search results
Results from the WOW.Com Content Network
These problems are generally of two kinds: (1) those in which the sample size is so large that one may treat a data-based estimate of the variance as if it were certain, and (2) those that illustrate mathematical reasoning, in which the problem of estimating the standard deviation is temporarily ignored because that is not the point that the ...
One way of seeing that this is a biased estimator of the standard deviation of the population is to start from the result that s 2 is an unbiased estimator for the variance σ 2 of the underlying population if that variance exists and the sample values are drawn independently with replacement. The square root is a nonlinear function, and only ...
A set of two power sums s 1 and s 2 are computed over a set of N values of x, denoted as x 1, ..., x N: s j = ∑ k = 1 N x k j . {\displaystyle s_{j}=\sum _{k=1}^{N}{x_{k}^{j}}.} Given the results of these running summations, the values N , s 1 , s 2 can be used at any time to compute the current value of the running standard deviation:
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
The geometric standard deviation is used as a measure of log-normal dispersion analogously to the geometric mean. [3] As the log-transform of a log-normal distribution results in a normal distribution, we see that the geometric standard deviation is the exponentiated value of the standard deviation of the log-transformed values, i.e. = ( ()).
For example, Φ(2) ≈ 0.9772, or Pr(X ≤ μ + 2σ) ≈ 0.9772, corresponding to a prediction interval of (1 − (1 − 0.97725)·2) = 0.9545 = 95.45%. This is not a symmetrical interval – this is merely the probability that an observation is less than μ + 2 σ .
The probability density, cumulative distribution, and inverse cumulative distribution of any function of one or more independent or correlated normal variables can be computed with the numerical method of ray-tracing [41] (Matlab code). In the following sections we look at some special cases.
The figure on the right was created using A = 1, x 0 = 0, y 0 = 0, σ x = σ y = 1. The volume under the Gaussian function is given by V = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = 2 π A σ X σ Y . {\displaystyle V=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }f(x,y)\,dx\,dy=2\pi A\sigma _{X}\sigma _{Y}.}