Search results
Results from the WOW.Com Content Network
Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.
In computer vision, the term cuboid is used to describe a small spatiotemporal volume extracted for purposes of behavior recognition. [1] The cuboid is regarded as a basic geometric primitive type and is used to depict three-dimensional objects within a three dimensional representation of a flat, two dimensional image.
A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...
A cuboid, a topological cube, has 8 vertices, 12 edges, and 6 quadrilateral faces, making it a type of hexahedron. In the context of meshes, a cuboid is often called a hexahedron, hex, or brick. [1] For the same cell amount, the accuracy of solutions in hexahedral meshes is the highest.
The Necker cube is an optical illusion that was first published as a rhomboid in 1832 by Swiss crystallographer Louis Albert Necker. [1] It is a simple wire-frame, two dimensional drawing of a cube with no visual cues as to its orientation, so it can be interpreted to have either the lower-left or the upper-right square as its front side.
Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces, a cuboid can be transformed into a cube. In math language a cuboid is convex polyhedron , whose polyhedral graph is the same as that of a cube .
The following other wikis use this file: Usage on ar.wikipedia.org فضاء ثلاثي الأبعاد; تمثيل المتجهات; Usage on ckb.wikipedia.org
In the case of the body cuboid, the body (space) diagonal g is irrational. For the edge cuboid, one of the edges a, b, c is irrational. The face cuboid has one of the face diagonals d, e, f irrational. The body cuboid is commonly referred to as the Euler cuboid in honor of Leonhard Euler, who discussed this type of cuboid. [15]