Search results
Results from the WOW.Com Content Network
If the equation system is expressed in the matrix form =, the entire solution set can also be expressed in matrix form. If the matrix A is square (has m rows and n=m columns) and has full rank (all m rows are independent), then the system has a unique solution given by
Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
In mathematics, a fundamental matrix of a system of n homogeneous linear ordinary differential equations ˙ = () is a matrix-valued function () whose columns are linearly independent solutions of the system. [1]
Ritz–Galerkin method (after Walther Ritz) typically assumes symmetric and positive definite bilinear form in the weak formulation, where the differential equation for a physical system can be formulated via minimization of a quadratic function representing the system energy and the approximate solution is a linear combination of the given set ...
If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [1] [2] The state-space method is characterized by the algebraization of general system theory, which makes it possible to use Kronecker vector-matrix structures.
An alternative approach that uses the matrix form of the quadratic equation is based on the fact that when the center is the origin of the coordinate system, there are no linear terms in the equation. Any translation to a coordinate origin (x 0, y 0), using x* = x – x 0, y* = y − y 0 gives rise to
LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.