Search results
Results from the WOW.Com Content Network
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula.For instance, the universal quantifier in the first order formula () expresses that everything in the domain satisfies the property denoted by .
Example requires a quantifier over predicates, which cannot be implemented in single-sorted first-order logic: Zj → ∃X(Xj∧Xp). Quantification over properties Santa Claus has all the attributes of a sadist. Example requires quantifiers over predicates, which cannot be implemented in single-sorted first-order logic: ∀X(∀x(Sx → Xx) → ...
Translate the matrices of the most deeply nested quantifiers into disjunctive normal form, consisting of disjuncts of conjuncts of terms, negating atomic terms as required. The resulting subformula contains only negation, conjunction, disjunction, and existential quantification.
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...
A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates.
First-order logic can quantify over individuals, but not over properties. That is, we can take an atomic sentence like Cube(b) and obtain a quantified sentence by replacing the name with a variable and attaching a quantifier: [1] ∃x Cube(x) However, we cannot do the same with the predicate. That is, the following expression: ∃P P(b)
In semantics and mathematical logic, a quantifier is a way that an argument claims that an object with a certain property exists or that no object with a certain property exists. Not to be confused with Category:Quantification (science) .
Second-order logic allows quantification over predicates. However, MSO is the fragment in which second-order quantification is limited to monadic predicates (predicates having a single argument). This is often described as quantification over "sets" because monadic predicates are equivalent in expressive power to sets (the set of elements for ...