Ads
related to: multiplying and adding exponentseducation.com has been visited by 100K+ users in the past month
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Lesson Plans
Search results
Results from the WOW.Com Content Network
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.
Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography, this method is also referred to as double-and-add.
When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of their base. [2] Thus 3 + 5 2 = 28 and 3 × 5 2 = 75. These conventions exist to avoid notational ambiguity while allowing notation to remain brief. [4]
When adding or subtracting two or more quantities, add the absolute uncertainties of each summand together to obtain the absolute uncertainty of the sum. When multiplying or dividing two or more quantities, add the relative uncertainties of each factor together to obtain the relative uncertainty of the product. [113]
The definition of exponentiation can also be given by transfinite recursion on the exponent β. When the exponent β = 0, ordinary exponentiation gives α 0 = 1 for any α. For β > 0, the value of α β is the smallest ordinal greater than or equal to α δ · α for all δ < β. Writing the successor and limit ordinals cases separately: α 0 = 1.
Using the form of the shortest addition chain, with multiplication instead of addition, computes the desired exponent (instead of multiple) of the base. (This corresponds to OEIS sequence A003313 (Length of shortest addition chain for n).) Each exponentiation in the chain can be evaluated by multiplying two of the earlier exponentiation results.
Ads
related to: multiplying and adding exponentseducation.com has been visited by 100K+ users in the past month