enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    The rational numbers seemingly form a counterexample to the continuum hypothesis: the integers form a proper subset of the rationals, which themselves form a proper subset of the reals, so intuitively, there are more rational numbers than integers and more real numbers than rational numbers.

  3. Vitali set - Wikipedia

    en.wikipedia.org/wiki/Vitali_set

    A Vitali set is a subset of the interval [,] of real numbers such that, for each real number , there is exactly one number such that is a rational number.Vitali sets exist because the rational numbers form a normal subgroup of the real numbers under addition, and this allows the construction of the additive quotient group / of these two groups which is the group formed by the cosets + of the ...

  4. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, a rational number is a number that can be expressed as the quotient or fraction ⁠ ⁠ of two integers, a numerator p and a non-zero denominator q. [1] For example, ⁠ ⁠ is a rational number, as is every integer (for example, ). The set of all rational numbers, also referred to as " the rationals ", [2] the field of ...

  5. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    This produces a sequence of approximations, all of which are rational numbers, and these converge to the starting number as a limit. This is the (infinite) continued fraction representation of the number. Examples of continued fraction representations of irrational numbers are: √ 19 = [4;2,1,3,1,2,8,2,1,3,1,2,8,...] (sequence A010124 in the ...

  6. Diophantine approximation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_approximation

    t. e. In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number p / q is a "good" approximation of a real ...

  7. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Problem II.8 of the Arithmetica asks how a given square number is split into two other squares; in other words, for a given rational number k, find rational numbers u and v such that k 2 = u 2 + v 2. Diophantus shows how to solve this sum-of-squares problem for k = 4 (the solutions being u = 16/5 and v = 12/5). [29]

  8. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Repeating decimal. A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be ...

  9. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).